Want to improve this question? upgrade the inquiry so it's on-topic for thedesigningfairy.comematics Stack Exchange.

Closed 5 years ago.

You are watching: Determine if v is in the set spanned by the columns of b.

Given a procession A = eginbmatrix1 &2 &3 \ 4 &5 &6 \ 7 &8 &9 endbmatrix

Determine if vector \$b\$ is in \$span(A)\$where \$\$b = eginbmatrix1 \ 2 \ 4 endbmatrix\$\$

First we deal with \$ hedesigningfairy.comrmSpan(A)\$,

\$\$ hedesigningfairy.comrmSpan(A) = left left< eginarrayc x_1\ x_2\ x_3\ endarray ight> : left< eginarrayc x_1\ x_2\ x_3\ endarray ight> = a left<eginarrayc 1\ 4\ 7\ endarray ight> + b left<eginarrayc 2\ 5\ 8\ endarray ight> + c left<eginarrayc 3\ 6\ 9\ endarray ight>. A,b,c in hedesigningfairy.combbR ight.\$\$

From this an interpretation we can see the asking if vector \$vecb in hedesigningfairy.comrmSpan(A)\$ is equivalent to questioning if over there exists a vector \$vecx\$ such the \$Avecx = vecb\$,

because \$\$vecx = left<eginarrayc x_1\ x_2\ x_3\ endarray ight>,\$\$

then \$\$Avecx = left<eginarrayccc 1 & 2 & 3\ 4& 5 & 6\ 7 & 8 & 9\ endarray ight> left< eginarrayc x_1\ x_2\ x_3 endarray ight> = x_1 left< eginarrayc 1\ 4\ 7 endarray ight> + x_2 left< eginarrayc 2\ 5\ 8 endarray ight> + x_3 left< eginarrayc 3\ 6\ 9 endarray ight>.\$\$

So if over there exists \$x_1, x_2, x_3\$ such the the final line amounts to \$vecb\$, climate we recognize \$vecb\$ is in \$ hedesigningfairy.comrmSpan(A)\$. This way it suffices to ask if over there exists a \$vecx\$ such that \$Avecx = vecb\$.

This last equation is identical to the procession equation:

\$\$left<eginarrayccc 1 & 2 & 3\ 4 & 5 & 6\ 7 & 8 & 9 endarray ight> vecx = left<eginarrayc 1\ 2\ 4\ endarray ight>,\$\$which we can convert to the system:

\$\$left<eginarrayc 1 & 2 & 3 & 1\ 4 & 5 & 6 & 2\ 7 & 8 & 9 & 4\endarray ight>.\$\$

As you can have learned, we solve this mechanism by heat reduction (I used an innovation for this step, your instructor may require row reduction through hand):

\$\$ hedesigningfairy.comrmRREFleft(left<eginarrayc 1 & 2 & 3 & 1\ 4 & 5 & 6 & 2\ 7 & 8 & 9 & 4\endarray ight> ight) = left<eginarrayccc 1 & 0 & 0 & frac-43\ 0 & 1 & 0 & frac83 \ 0 & 0 & 1 & -1\endarray ight>. \$\$

This implies the vector \$vecx\$ we seek is given by:\$\$vecx = left<eginarrayc frac-43\ frac83 \ -1\ endarray ight>.\$\$

The visibility of this \$vecx\$ alone assures \$vecb in hedesigningfairy.comrmSpan(A)\$, but lets examine our prize by computer \$Avecx\$.

See more: Which Item Among The Following Is Not An Intangible Asset? ? A

\$\$Avecx = left<eginarrayccc 1 & 2 & 3\ 4 & 5 & 6\ 7 & 8 & 9 endarray ight> left<eginarrayc frac-43\ frac83 \ -1\ endarray ight> = left<eginarrayc 1\ 2 \ 4\ endarray ight>, \$\$

as desired.

Some points to think about: are there any vectors in \$ hedesigningfairy.combbR^3\$ that room not in Span(\$A\$)? If so can you uncover them, if not can you justify it? hope this price helps!